Charting the Research Terrain of Artificial Intelligence in Human Resource Management : A Bibliometric Analysis and Emerging Research Horizons
DOI:
https://doi.org/10.17010/pijom/2025/v18i8/173901Keywords:
artificial intelligence, bibliometric, human resource management, AI, HRM, literature review.JEL Classification Codes : M0, M1, M5, O3
Publication Chronology: Paper Submission Date : September 25, 2024 ; Paper sent back for Revision : March 20, 2025 ; Paper Acceptance Date : July 20, 2025 ; Paper Published Online : August 14, 2025
Abstract
Purpose : The study focused on identifying the research trends in artificial intelligence applications in human resource management. It highlighted notable contributions to the research domain.
Research Method : The study conducted a bibliometric analysis on the Scopus database to understand the growth of literature over the last two decades and identify significant contributors. Since the study aimed to examine the recent developments in the human resource function concerning artificial intelligence, the research work from the last two decades was analyzed.
Findings : The paper highlighted the growth of literature on AI implementation in HRM after 2018 and the participation of different countries in the research domain. However, it found a lack of collaboration among authors from different countries. The research also identified important keywords, highly cited authors, and the impact of prominent journals in the field, which could help scholars investigating the domain.
Originality : The study is unique in itself as it considers an extensive range of literature. The paper identified key papers, authors, and countries in the field. Additionally, we highlighted major themes within the literature, revealing commonly studied subtopics.
Downloads
Published
How to Cite
Issue
Section
References
1) Arslan, A., Cooper, C., Khan, Z., Golgeci, I., & Ali, I. (2022). Artificial intelligence and human workers interaction at team level: A conceptual assessment of the challenges and potential HRM strategies. International Journal of Manpower, 43(1), 75–88. https://doi.org/10.1108/IJM-01-2021-0052
2) Batista-Canino, R. M., Santana-Hernández, L., & Medina-Brito, P. (2023). A scientometric analysis on entrepreneurial intention literature: Delving deeper into local citation. Heliyon, 9(2), Article ID e13046. https://doi.org/10.1016/j.heliyon.2023.e13046
3) Bhardwaj, G., Singh, S. V., & Kumar, V. (2020). An empirical study of artificial intelligence and its impact on human resource functions. In 2020 International Conference on Computation, Automation and Knowledge Management (ICCAKM) (pp. 47–51). IEEE. https://doi.org/10.1109/ICCAKM46823.2020.9051544
4) Bhojanna, U., Srikanth, I. G., & Tiwari, A. (2013). Strategic HR: Success key to organizational effectiveness. Prabandhan: Indian Journal of Management, 6(5), 20–25. https://doi.org/10.17010/pijom/2013/v6i5/59997
5) Biswas, W., & Chakraborty, D. (2019). Impact of organizational values, compassion, and well-being on industrial disputes: An empirical study. Prabandhan: Indian Journal of Management, 12(1), 36–51. https://doi.org/10.17010/pijom/2019/v12i1/141427
6) Black, J. S., & van Esch, P. (2020). AI-enabled recruiting: What is it and how should a manager use it? Business Horizons, 63(2), 215–226. https://doi.org/10.1016/j.bushor.2019.12.001
7) Broadus, R. N. (1987). Toward a definition of “bibliometrics.” Scientometrics, 12(5–6), 373–379. https://doi.org/10.1007/BF02016680
8) Byun, D.-H., & Suh, E.-H. (1994). Human resource management expert systems technology. Expert Systems with Applications, 11(2), 109–119. https://doi.org/10.1111/j.1468-0394.1994.tb00004.x
9) Caputo, F., Gillo, V., Candelo, E., & Liu, Y. (2019). Innovating through digital revolution: The role of soft skills and big data in increasing firm performance. Management Decision, 57(8), 2032–2051. https://doi.org/10.1108/MD-07-2018-0833
10) Chakraborty, D., & Altekar, S. (2021). Work from home (WFH), COVID-19, and its impact on women. Prabandhan: Indian Journal of Management, 14(9), 22–29. https://doi.org/10.17010/pijom/2021/v14i9/166294
11) Côrte-Real, N., Ruivo, P., & Oliveira, T. (2014). The diffusion stages of business intelligence & analytics (BI&A): A systematic mapping study. Procedia Technology, 16, 172–179. https://doi.org/10.1016/j.protcy.2014.10.080
12) Dabirian, A., Kietzmann, J., & Diba, H. (2017). A great place to work!? Understanding crowdsourced employer branding. Business Horizons, 60(2), 197–205. https://doi.org/10.1016/j.bushor.2016.11.005
13) Davenport, T. H. (2018). From analytics to artificial intelligence. Journal of Business Analytics, 1(2), 73–80. https://doi.org/10.1080/2573234X.2018.1543535
14) De Mauro, A., Greco, M., Grimaldi, M., & Ritala, P. (2018). Human resources for big data professions: A systematic classification of job roles and required skill sets. Information Processing & Management, 54(5), 807–817. https://doi.org/10.1016/j.ipm.2017.05.004
15) Dirican, C. (2015). The impacts of robotics, artificial intelligence on business and economics. Procedia - Social and Behavioral Sciences, 195, 564–573. https://doi.org/10.1016/j.sbspro.2015.06.134
16) Dixit, A., Jha, R., Baber, R., & Baber, P. (2024). The impact of artificial intelligence on digital employee engagement. Prabandhan: Indian Journal of Management, 17(9), 24–43. https://doi.org/10.17010/pijom/2024/v17i9/173940
17) Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070
18) Donthu, N., Kumar, S., & Pattnaik, D. (2020). Forty-five years of Journal of Business Research: A bibliometric analysis. Journal of Business Research, 109, 1–14. https://doi.org/10.1016/j.jbusres.2019.10.039
19) Fatima, S., Tandon, P., & Bhadur, A. B. (2024). Current state and future directions of sustainability and innovation in finance: A bibliometric review. International Journal of System Assurance Engineering and Management, 15, 1591–1614. https://doi.org/10.1007/s13198-023-02041-9
20) Fritts, M., & Cabrera, F. (2021). AI recruitment algorithms and the dehumanization problem. Ethics and Information Technology, 23(4), 791–801. https://doi.org/10.1007/s10676-021-09615-w
21) Gupta, P., Fernandes, S. F., & Jain, M. (2018). Automation in recruitment: A new frontier. Journal of Information Technology Teaching Cases, 8(2), 118–125. https://doi.org/10.1057/s41266-018-0042-x
22) Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California Management Review, 61(4), 5–14. https://doi.org/10.1177/0008125619864925
23) Harl, M., Weinzierl, S., Stierle, M., & Matzner, M. (2020). Explainable predictive business process monitoring using gated graph neural networks. Journal of Decision Systems, 29(1), 312–327. https://doi.org/10.1080/12460125.2020.1780780
24) Haslinda, A. (2009). Evolving terms of human resource management and development. The Journal of International Social Research, 2(9), 180–186. https://www.researchgate.net/publication/40426281
25) Hmoud, B. (2021). The adoption of artificial intelligence in human resource management. Forum Scientiae Oeconomia, 9(1), 105–118. https://doi.org/10.23762/FSO_VOL9_NO1_7
26) Huang, M.-H., & Rust, R. T. (2018). Artificial intelligence in service. Journal of Service Research, 21(2), 155–172. https://doi.org/10.1177/1094670517752459
27) Huang, M.-H., Rust, R. T., & Maksimovic, V. (2019). The feeling economy: Managing in the next generation of artificial intelligence (AI). California Management Review, 61(4), 43–65. https://doi.org/10.1177/0008125619863436
28) Huselid, M. A. (1995). The impact of human resource management practices on turnover, productivity, and corporate financial performance. Academy of Management Journal, 38(3), 635–672. https://doi.org/10.2307/256741
29) Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human‑AI symbiosis in organizational decision making. Business Horizons, 61(4), 577–586. https://doi.org/10.1016/j.bushor.2018.03.007
30) Javaid, M., & Haleem, A. (2020). Critical components of Industry 5.0 towards a successful adoption in the field of manufacturing. Journal of Industrial Integration and Management, 5(3), 327–348. https://doi.org/10.1142/S2424862220500141
31) Jayaraman, R. (2013). Succeeding through people: An overview of how business excellence practices have changed the HR landscape. Prabandhan: Indian Journal of Management, 6(1), 5–12. https://doi.org/10.17010/pijom/2013/v6i1/59944
32) Jayswal, M., Shukla, K., & Heda, N. (2015). Issues and uses of online job portals: A comparative study from the perspective of recruitment consultants in Gujarat. Prabandhan: Indian Journal of Management, 8(5), 25–35. https://doi.org/10.17010/pijom/2015/v8i5/68766
33) Jones, J. L. (2006). Robots at the tipping point—The road to the iRobot Roomba. IEEE Robotics & Automation Magazine, 13(1), 76–78. https://doi.org/10.1109/MRA.2006.1598056
34) Joshi, A., Sunny, N., & Vashisht, S. (2017). Recent trends in HRM: A qualitative analysis using AHP. Prabandhan: Indian Journal of Management, 10(10), 41–52. https://doi.org/10.17010/pijom/2017/v10i10/118814
35) Khan, M. H., & Muktar, S. N. (2020). A bibliometric analysis of green human resource management based on Scopus platform. Cogent Business & Management, 7(1), Article ID 1831165. https://doi.org/10.1080/23311975.2020.1831165
36) Kot, S., Hussain, H. I., Bilan, S., Haseeb, M., & Mihardjo, L. W. (2021). The role of artificial intelligence recruitment and quality to explain the phenomenon of employer reputation. Journal of Business Economics and Management, 22(4), 867–883. https://doi.org/10.3846/jbem.2021.14606
37) Kuchař, Š., & Vondrák, I. (2016). Automatic allocation of resources in software process simulations using their capability and productivity. Journal of Simulation, 10(3), 227–236. https://doi.org/10.1057/jos.2015.8
38) Kumari, N., & Singh, D. (2018). Impact of organizational culture on employee performance. Prabandhan: Indian Journal of Management, 11(6), 53–63. https://doi.org/10.17010/pijom/2018/v11i6/128442
39) Langbert, M., & Friedman, H. (2002). Continuous improvement in the history of human resource management. Management Decision, 40(8), 782–787. https://doi.org/10.1108/00251740210437734
40) Loureiro, S. M., Guerreiro, J., & Tussyadiah, I. (2021). Artificial intelligence in business: State of the art and future research agenda. Journal of Business Research, 129, 911–926. https://doi.org/10.1016/j.jbusres.2020.11.001
41) Maben, A. S., & Uchil, R. (2019). Talent management strategies and customer delight: A conceptual study. Indian Journal of Marketing, 49(3), 63–71. https://doi.org/10.17010/ijom/2019/v49/i3/142147
42) Malinowski, J., Weitzel, T., & Keim, T. (2008). Decision support for team staffing: An automated relational recommendation approach. Decision Support Systems, 45(3), 429–447. https://doi.org/10.1016/j.dss.2007.05.005
43) McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the Dartmouth summer research project on artificial intelligence, August 31, 1955. AI Magazine, 27(4), 12–14. https://doi.org/10.1609/aimag.v27i4.1904
44) McKendrick, J. (2021). AI adoption skyrocketed over the last 18 months. Harvard Business Review. https://hbr.org/2021/09/ai-adoption-skyrocketed-over-the-last-18-months
45) Mercado, J. E., Rupp, M. A., Chen, J. Y., Barnes, M. J., Barber, D., & Procci, K. (2016). Intelligent agent transparency in human-agent teaming for multi-UxV management. Human Factors, 58(3), 401–415. https://doi.org/10.1177/0018720815621206
46) Minbaeva, D. B. (2018). Building credible human capital analytics for organizational competitive advantage. Human Resource Management, 57(3), 701–713. https://doi.org/10.1002/hrm.21848
47) Mishra, R. K. (2014). Identification of strategic project management resources in Indian software project management companies. Prabandhan: Indian Journal of Management, 7(9), 7–23. https://doi.org/10.17010/pijom/2014/v7i9/59237
48) Mohapatra, A. K., Matta, R., Soni, R., & Hiremath, N. V. (2024). Evaluating the role of artificial intelligence on ESG reporting: Evidence from India. Prabandhan: Indian Journal of Management, 17(11), 8–22. https://doi.org/10.17010/pijom/2024/v17i11/174020
49) Mujtaba, D. F., & Mahapatra, N. R. (2019). Ethical considerations in AI-based recruitment. In 2019 IEEE International Symposium on Technology and Society (ISTAS) (pp. 1–7). IEEE. https://doi.org/10.1109/ISTAS48451.2019.8937920
50) Muthukrishnan, N., Maleki, F., Ovens, K., Reinhold, C., Forghani, B., & Forghani, R. (2020). Brief history of artificial intelligence. Neuroimaging Clinics of North America, 30(4), 393–399. https://doi.org/10.1016/j.nic.2020.07.004
51) Newell, A., & Simon, H. (1956). The logic theory machine: A complex information processing system. IRE Transactions on Information Theory, 2(3), 61–79. https://doi.org/10.1109/TIT.1956.1056797
52) Nguyen, L. A., & Park, M. (2022). Artificial intelligence in staffing. Vision. https://doi.org/10.1177/09722629221096803
53) Obeidat, B. Y. (2012). The relationship between human resource information system (HRIS) functions and human resource management (HRM) functionalities. Journal of Management Research, 4(4), 192–211. https://doi.org/10.5296/jmr.v4i4.2262
54) Oncioiu, I., Anton, E., Ifrim, A. M., & Mândricel, D. A. (2022). The influence of social networks on the digital recruitment of human resources: An empirical study in the tourism sector. Sustainability, 14(6), 3693. https://doi.org/10.3390/su14063693
55) Pahari, S., Polisetty, A., Sharma, S., Jha, R., & Chakraborty, D. (2023). Adoption of AI in the banking industry: A case study on Indian banks. Indian Journal of Marketing, 53(3), 26–41. https://doi.org/10.17010/ijom/2023/v53/i3/172654
56) Pan, Y., Froese, F., Liu, N., Hu, Y., & Ye, M. (2022). The adoption of artificial intelligence in employee recruitment: The influence of contextual factors. The International Journal of Human Resource Management, 33(6), 1125–1147. https://doi.org/10.1080/09585192.2021.1879206
57) Patra, G., Mukhopadhyay, I., & Dash, C. K. (2019). Digital employer branding for enabling Gen Y in the ITeS sector in Eastern India. Prabandhan: Indian Journal of Management, 12(3), 38–49. https://doi.org/10.17010/pijom/2019/v12i3/142339
58) Patra, Y., & Tripathi, S. (2019). Contriving human capital practices which influence organizational commitment: Reimagine future skills of HR. Prabandhan: Indian Journal of Management, 12(10), 20–32. https://doi.org/10.17010/pijom/2019/v12i10/147814
59) Pessach, D., Singer, G., Avrahami, D., Ben-Gal, H., Shmueli, G., & Ben-Gal, I. (2020). Employees recruitment: A prescriptive analytics approach via machine learning and mathematical programming. Decision Support Systems, 134, Article ID 113290. https://doi.org/10.1016/j.dss.2020.113290
60) Polisetty, A., & Sheela, P. (2023). Will AI replace humans from human resources? A case analysis. Prabandhan: Indian Journal of Management, 16(6), 25–38. https://doi.org/10.17010/pijom/2023/v16i6/172862
61) Qamar, Y., Agrawal, R. K., Samad, T. A., & Jabbour, C. J. (2021). When technology meets people: The interplay of artificial intelligence and human resource management. Journal of Enterprise Information Management, 34(5), 1339–1370. https://doi.org/10.1108/JEIM-11-2020-0436
62) Rąb-Kettler, K., & Lehnervp, B. (2019). Recruitment in the times of machine learning. Management Systems in Production Engineering, 27(2), 105–109. https://doi.org/10.1515/mspe-2019-0018
63) Raj, I. A., & Julius, S. (2018). Causes and consequences of work stress and coping behaviour of employees: An analysis. Prabandhan: Indian Journal of Management, 11(3), 24–38. https://doi.org/10.17010/pijom/2018/v11i3/122075
64) Ramaprasad, B. S., Prabhu, K. P., Lakshminarayana, S., & Pai, Y. P. (2017). Human resource management practices and organizational commitment: A comprehensive review (2001–2016). Prabandhan: Indian Journal of Management, 10(10), 7–23. https://doi.org/10.17010/pijom/2017/v10i10/118810
65) Rathi, R. A. (2018). Artificial intelligence and the future of HR practices. International Journal of Applied Research, 4(6), 113–116. https://www.allresearchjournal.com/archives/2018/vol4issue6/PartB/4-6-18-226.pdf
66) Selek, S., & Saleh, A. (2014). Use of h index and g index for American academic psychiatry. Scientometrics, 99, 541–548. https://doi.org/10.1007/s11192-013-1204-4
67) Siddiqui, A., Siddiqui, M., & Kulkarni, N. (2022). Artificial intelligence in water conservation: A meta-analysis study. Prabandhan: Indian Journal of Management, 15(3), 24–41. https://doi.org/10.17010/pijom/2022/v15i3/160407
68) Singh, H., Aggarwal, R., Garg, P., & Aggarwal, D. (2025). AI and ESG performance: An empirical study of the high-tech sector. Prabandhan: Indian Journal of Management, 18(6), 8–25. https://doi.org/10.17010/pijom/2025/v18i6/174487
69) Sinha, B. C., & Mishra, M. (2015). E-HRM attributes and internal stakeholders' satisfaction: A quantitative study in select Indian organizations. Prabandhan: Indian Journal of Management, 7(2), 27–39. https://doi.org/10.17010/pijom/2014/v7i2/59257
70) Strohmeier, S., & Piazza, F. (2015). Artificial intelligence techniques in human resource management—A conceptual exploration. In C. Kahraman, & S. Ç. Onar (eds.), Intelligent techniques in engineering management. Intelligent Systems Reference Library (Vol. 87, pp. 149–172). https://doi.org/10.1007/978-3-319-17906-3_7
71) Surwase, G., Sagar, A., Kademani, B. S., & Bhanumurthy, K. (2011). Co-citation analysis: An overview. In BOSLA National Conference Proceedings (pp. 179–185). Bombay Science Librarian Association. https://core.ac.uk/download/pdf/290485458.pdf
72) Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial intelligence in human resources management: Challenges and a path forward. California Management Review, 61(4), 15–42. https://doi.org/10.1177/0008125619867910
73) Thite, M. (2014). From local to global HRM: Interviews with HR heads in emerging Indian multinationals. International Journal of Indian Culture and Business Management, 9(2), 151–163. https://doi.org/10.1504/IJICBM.2014.064185
74) Tong, S., Jia, N., Luo, X., & Fang, Z. (2021). The Janus face of artificial intelligence feedback: Deployment versus disclosure effects on employee performance. Strategic Management Journal, 42(9), 1600–1631. https://doi.org/10.1002/smj.3322
75) Tripathi, A., Bagga, T., & Aggarwal, R. K. (2020). Strategic impact of business intelligence: A review of literature. Prabandhan: Indian Journal of Management, 13(3), 35–48. https://doi.org/10.17010/pijom/2020/v13i3/151175
76) Tripathi, S., Gautam, S., & Lal, A. (2017). Evolving human resource landscape of the Indian retail sector: Bridging the skill-gap. Prabandhan: Indian Journal of Management, 10(2), 41–52. https://doi.org/10.17010/pijom/2017/v10i2/110633
77) Vaishnavi, Amritaa, K. S., & Achwani, S. (2018). A study on use of artificial intelligence in human resource management. Gavesana Journal of Management, 10(2), 45–56. https://www.proquest.com/openview/cd9b4bd51715410b87eab5a9a4faa1f0/1?pq-origsite=gscholar&cbl=2044546
78) Vatsa, R., & Bhatnagar, P. (2021). Role of learning ability and learning agility for corporate success: A textual analysis. Prabandhan: Indian Journal of Management, 14(10), 24–37. https://doi.org/10.17010/pijom/2021/v14i10/166642
79) Votto, A. M., Valecha, R., Najafirad, P., & Rao, H. R. (2021). Artificial intelligence in tactical human resource management: A systematic literature review. International Journal of Information Management Data Insights, 1(2), Article ID 100047. https://doi.org/10.1016/j.jjimei.2021.100047
80) Vrontis, D., Christofi, M., Pereira, V., Tarba, S., Makrides, A., & Trichina, E. (2022). Artificial intelligence, robotics, advanced technologies and human resource management: A systematic review. The International Journal of Human Resource Management, 33(6), 1237–1266. https://doi.org/10.1080/09585192.2020.1871398
81) Wilfred, D. (2018). AI in recruitment. NHRD Network Journal, 11(2), 15–18. https://doi.org/10.1177/0974173920180204
82) Wright, S. A., & Schultz, A. E. (2018). The rising tide of artificial intelligence and business automation: Developing an ethical framework. Business Horizons, 61(6), 823–832. https://doi.org/10.1016/j.bushor.2018.07.001
83) Yadav, D. K., Yadav, J., & Malik, R. (2019). E-HRM: A paradigm shift in HR practices and its effects on perception of employees towards accepting this new technology. Prabandhan: Indian Journal of Management, 12(2), 23–39. https://doi.org/10.17010/pijom/2019/v12i2/141754