Charting the Research Terrain of Artificial Intelligence in Human Resource Management : A Bibliometric Analysis and Emerging Research Horizons

Authors

  •   Divya Shukla Research Scholar (Corresponding Author), Jaypee Business School, Jaypee Institute of Information Technology, A-10, Sector-62, Noida - 201 309, Uttar Pradesh ORCID logo https://orcid.org/0000-0002-8468-6542
  •   Mitushi Singh Assistant Professor (Senior Grade), Jaypee Business School, Jaypee Institute of Information Technology, A-10, Sector-62, Noida - 201 309, Uttar Pradesh

DOI:

https://doi.org/10.17010/pijom/2025/v18i8/173901

Keywords:

artificial intelligence, bibliometric, human resource management, AI, HRM, literature review.
JEL Classification Codes : M0, M1, M5, O3
Publication Chronology: Paper Submission Date : September 25, 2024 ; Paper sent back for Revision : March 20, 2025 ; Paper Acceptance Date : July 20, 2025 ; Paper Published Online : August 14, 2025

Abstract

Purpose : The study focused on identifying the research trends in artificial intelligence applications in human resource management. It highlighted notable contributions to the research domain.

Research Method : The study conducted a bibliometric analysis on the Scopus database to understand the growth of literature over the last two decades and identify significant contributors. Since the study aimed to examine the recent developments in the human resource function concerning artificial intelligence, the research work from the last two decades was analyzed.

Findings : The paper highlighted the growth of literature on AI implementation in HRM after 2018 and the participation of different countries in the research domain. However, it found a lack of collaboration among authors from different countries. The research also identified important keywords, highly cited authors, and the impact of prominent journals in the field, which could help scholars investigating the domain.

Originality : The study is unique in itself as it considers an extensive range of literature. The paper identified key papers, authors, and countries in the field. Additionally, we highlighted major themes within the literature, revealing commonly studied subtopics.

Downloads

Download data is not yet available.

Published

2025-08-14

How to Cite

Shukla, D., & Singh, M. (2025). Charting the Research Terrain of Artificial Intelligence in Human Resource Management : A Bibliometric Analysis and Emerging Research Horizons. Prabandhan: Indian Journal of Management, 18(8), 51–74. https://doi.org/10.17010/pijom/2025/v18i8/173901

Issue

Section

Articles

References

1) Arslan, A., Cooper, C., Khan, Z., Golgeci, I., & Ali, I. (2022). Artificial intelligence and human workers interaction at team level: A conceptual assessment of the challenges and potential HRM strategies. International Journal of Manpower, 43(1), 75–88. https://doi.org/10.1108/IJM-01-2021-0052

2) Batista-Canino, R. M., Santana-Hernández, L., & Medina-Brito, P. (2023). A scientometric analysis on entrepreneurial intention literature: Delving deeper into local citation. Heliyon, 9(2), Article ID e13046. https://doi.org/10.1016/j.heliyon.2023.e13046

3) Bhardwaj, G., Singh, S. V., & Kumar, V. (2020). An empirical study of artificial intelligence and its impact on human resource functions. In 2020 International Conference on Computation, Automation and Knowledge Management (ICCAKM) (pp. 47–51). IEEE. https://doi.org/10.1109/ICCAKM46823.2020.9051544

4) Bhojanna, U., Srikanth, I. G., & Tiwari, A. (2013). Strategic HR: Success key to organizational effectiveness. Prabandhan: Indian Journal of Management, 6(5), 20–25. https://doi.org/10.17010/pijom/2013/v6i5/59997

5) Biswas, W., & Chakraborty, D. (2019). Impact of organizational values, compassion, and well-being on industrial disputes: An empirical study. Prabandhan: Indian Journal of Management, 12(1), 36–51. https://doi.org/10.17010/pijom/2019/v12i1/141427

6) Black, J. S., & van Esch, P. (2020). AI-enabled recruiting: What is it and how should a manager use it? Business Horizons, 63(2), 215–226. https://doi.org/10.1016/j.bushor.2019.12.001

7) Broadus, R. N. (1987). Toward a definition of “bibliometrics.” Scientometrics, 12(5–6), 373–379. https://doi.org/10.1007/BF02016680

8) Byun, D.-H., & Suh, E.-H. (1994). Human resource management expert systems technology. Expert Systems with Applications, 11(2), 109–119. https://doi.org/10.1111/j.1468-0394.1994.tb00004.x

9) Caputo, F., Gillo, V., Candelo, E., & Liu, Y. (2019). Innovating through digital revolution: The role of soft skills and big data in increasing firm performance. Management Decision, 57(8), 2032–2051. https://doi.org/10.1108/MD-07-2018-0833

10) Chakraborty, D., & Altekar, S. (2021). Work from home (WFH), COVID-19, and its impact on women. Prabandhan: Indian Journal of Management, 14(9), 22–29. https://doi.org/10.17010/pijom/2021/v14i9/166294

11) Côrte-Real, N., Ruivo, P., & Oliveira, T. (2014). The diffusion stages of business intelligence & analytics (BI&A): A systematic mapping study. Procedia Technology, 16, 172–179. https://doi.org/10.1016/j.protcy.2014.10.080

12) Dabirian, A., Kietzmann, J., & Diba, H. (2017). A great place to work!? Understanding crowdsourced employer branding. Business Horizons, 60(2), 197–205. https://doi.org/10.1016/j.bushor.2016.11.005

13) Davenport, T. H. (2018). From analytics to artificial intelligence. Journal of Business Analytics, 1(2), 73–80. https://doi.org/10.1080/2573234X.2018.1543535

14) De Mauro, A., Greco, M., Grimaldi, M., & Ritala, P. (2018). Human resources for big data professions: A systematic classification of job roles and required skill sets. Information Processing & Management, 54(5), 807–817. https://doi.org/10.1016/j.ipm.2017.05.004

15) Dirican, C. (2015). The impacts of robotics, artificial intelligence on business and economics. Procedia - Social and Behavioral Sciences, 195, 564–573. https://doi.org/10.1016/j.sbspro.2015.06.134

16) Dixit, A., Jha, R., Baber, R., & Baber, P. (2024). The impact of artificial intelligence on digital employee engagement. Prabandhan: Indian Journal of Management, 17(9), 24–43. https://doi.org/10.17010/pijom/2024/v17i9/173940

17) Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285–296. https://doi.org/10.1016/j.jbusres.2021.04.070

18) Donthu, N., Kumar, S., & Pattnaik, D. (2020). Forty-five years of Journal of Business Research: A bibliometric analysis. Journal of Business Research, 109, 1–14. https://doi.org/10.1016/j.jbusres.2019.10.039

19) Fatima, S., Tandon, P., & Bhadur, A. B. (2024). Current state and future directions of sustainability and innovation in finance: A bibliometric review. International Journal of System Assurance Engineering and Management, 15, 1591–1614. https://doi.org/10.1007/s13198-023-02041-9

20) Fritts, M., & Cabrera, F. (2021). AI recruitment algorithms and the dehumanization problem. Ethics and Information Technology, 23(4), 791–801. https://doi.org/10.1007/s10676-021-09615-w

21) Gupta, P., Fernandes, S. F., & Jain, M. (2018). Automation in recruitment: A new frontier. Journal of Information Technology Teaching Cases, 8(2), 118–125. https://doi.org/10.1057/s41266-018-0042-x

22) Haenlein, M., & Kaplan, A. (2019). A brief history of artificial intelligence: On the past, present, and future of artificial intelligence. California Management Review, 61(4), 5–14. https://doi.org/10.1177/0008125619864925

23) Harl, M., Weinzierl, S., Stierle, M., & Matzner, M. (2020). Explainable predictive business process monitoring using gated graph neural networks. Journal of Decision Systems, 29(1), 312–327. https://doi.org/10.1080/12460125.2020.1780780

24) Haslinda, A. (2009). Evolving terms of human resource management and development. The Journal of International Social Research, 2(9), 180–186. https://www.researchgate.net/publication/40426281

25) Hmoud, B. (2021). The adoption of artificial intelligence in human resource management. Forum Scientiae Oeconomia, 9(1), 105–118. https://doi.org/10.23762/FSO_VOL9_NO1_7

26) Huang, M.-H., & Rust, R. T. (2018). Artificial intelligence in service. Journal of Service Research, 21(2), 155–172. https://doi.org/10.1177/1094670517752459

27) Huang, M.-H., Rust, R. T., & Maksimovic, V. (2019). The feeling economy: Managing in the next generation of artificial intelligence (AI). California Management Review, 61(4), 43–65. https://doi.org/10.1177/0008125619863436

28) Huselid, M. A. (1995). The impact of human resource management practices on turnover, productivity, and corporate financial performance. Academy of Management Journal, 38(3), 635–672. https://doi.org/10.2307/256741

29) Jarrahi, M. H. (2018). Artificial intelligence and the future of work: Human‑AI symbiosis in organizational decision making. Business Horizons, 61(4), 577–586. https://doi.org/10.1016/j.bushor.2018.03.007

30) Javaid, M., & Haleem, A. (2020). Critical components of Industry 5.0 towards a successful adoption in the field of manufacturing. Journal of Industrial Integration and Management, 5(3), 327–348. https://doi.org/10.1142/S2424862220500141

31) Jayaraman, R. (2013). Succeeding through people: An overview of how business excellence practices have changed the HR landscape. Prabandhan: Indian Journal of Management, 6(1), 5–12. https://doi.org/10.17010/pijom/2013/v6i1/59944

32) Jayswal, M., Shukla, K., & Heda, N. (2015). Issues and uses of online job portals: A comparative study from the perspective of recruitment consultants in Gujarat. Prabandhan: Indian Journal of Management, 8(5), 25–35. https://doi.org/10.17010/pijom/2015/v8i5/68766

33) Jones, J. L. (2006). Robots at the tipping point—The road to the iRobot Roomba. IEEE Robotics & Automation Magazine, 13(1), 76–78. https://doi.org/10.1109/MRA.2006.1598056

34) Joshi, A., Sunny, N., & Vashisht, S. (2017). Recent trends in HRM: A qualitative analysis using AHP. Prabandhan: Indian Journal of Management, 10(10), 41–52. https://doi.org/10.17010/pijom/2017/v10i10/118814

35) Khan, M. H., & Muktar, S. N. (2020). A bibliometric analysis of green human resource management based on Scopus platform. Cogent Business & Management, 7(1), Article ID 1831165. https://doi.org/10.1080/23311975.2020.1831165

36) Kot, S., Hussain, H. I., Bilan, S., Haseeb, M., & Mihardjo, L. W. (2021). The role of artificial intelligence recruitment and quality to explain the phenomenon of employer reputation. Journal of Business Economics and Management, 22(4), 867–883. https://doi.org/10.3846/jbem.2021.14606

37) Kuchař, Š., & Vondrák, I. (2016). Automatic allocation of resources in software process simulations using their capability and productivity. Journal of Simulation, 10(3), 227–236. https://doi.org/10.1057/jos.2015.8

38) Kumari, N., & Singh, D. (2018). Impact of organizational culture on employee performance. Prabandhan: Indian Journal of Management, 11(6), 53–63. https://doi.org/10.17010/pijom/2018/v11i6/128442

39) Langbert, M., & Friedman, H. (2002). Continuous improvement in the history of human resource management. Management Decision, 40(8), 782–787. https://doi.org/10.1108/00251740210437734

40) Loureiro, S. M., Guerreiro, J., & Tussyadiah, I. (2021). Artificial intelligence in business: State of the art and future research agenda. Journal of Business Research, 129, 911–926. https://doi.org/10.1016/j.jbusres.2020.11.001

41) Maben, A. S., & Uchil, R. (2019). Talent management strategies and customer delight: A conceptual study. Indian Journal of Marketing, 49(3), 63–71. https://doi.org/10.17010/ijom/2019/v49/i3/142147

42) Malinowski, J., Weitzel, T., & Keim, T. (2008). Decision support for team staffing: An automated relational recommendation approach. Decision Support Systems, 45(3), 429–447. https://doi.org/10.1016/j.dss.2007.05.005

43) McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the Dartmouth summer research project on artificial intelligence, August 31, 1955. AI Magazine, 27(4), 12–14. https://doi.org/10.1609/aimag.v27i4.1904

44) McKendrick, J. (2021). AI adoption skyrocketed over the last 18 months. Harvard Business Review. https://hbr.org/2021/09/ai-adoption-skyrocketed-over-the-last-18-months

45) Mercado, J. E., Rupp, M. A., Chen, J. Y., Barnes, M. J., Barber, D., & Procci, K. (2016). Intelligent agent transparency in human-agent teaming for multi-UxV management. Human Factors, 58(3), 401–415. https://doi.org/10.1177/0018720815621206

46) Minbaeva, D. B. (2018). Building credible human capital analytics for organizational competitive advantage. Human Resource Management, 57(3), 701–713. https://doi.org/10.1002/hrm.21848

47) Mishra, R. K. (2014). Identification of strategic project management resources in Indian software project management companies. Prabandhan: Indian Journal of Management, 7(9), 7–23. https://doi.org/10.17010/pijom/2014/v7i9/59237

48) Mohapatra, A. K., Matta, R., Soni, R., & Hiremath, N. V. (2024). Evaluating the role of artificial intelligence on ESG reporting: Evidence from India. Prabandhan: Indian Journal of Management, 17(11), 8–22. https://doi.org/10.17010/pijom/2024/v17i11/174020

49) Mujtaba, D. F., & Mahapatra, N. R. (2019). Ethical considerations in AI-based recruitment. In 2019 IEEE International Symposium on Technology and Society (ISTAS) (pp. 1–7). IEEE. https://doi.org/10.1109/ISTAS48451.2019.8937920

50) Muthukrishnan, N., Maleki, F., Ovens, K., Reinhold, C., Forghani, B., & Forghani, R. (2020). Brief history of artificial intelligence. Neuroimaging Clinics of North America, 30(4), 393–399. https://doi.org/10.1016/j.nic.2020.07.004

51) Newell, A., & Simon, H. (1956). The logic theory machine: A complex information processing system. IRE Transactions on Information Theory, 2(3), 61–79. https://doi.org/10.1109/TIT.1956.1056797

52) Nguyen, L. A., & Park, M. (2022). Artificial intelligence in staffing. Vision. https://doi.org/10.1177/09722629221096803

53) Obeidat, B. Y. (2012). The relationship between human resource information system (HRIS) functions and human resource management (HRM) functionalities. Journal of Management Research, 4(4), 192–211. https://doi.org/10.5296/jmr.v4i4.2262

54) Oncioiu, I., Anton, E., Ifrim, A. M., & Mândricel, D. A. (2022). The influence of social networks on the digital recruitment of human resources: An empirical study in the tourism sector. Sustainability, 14(6), 3693. https://doi.org/10.3390/su14063693

55) Pahari, S., Polisetty, A., Sharma, S., Jha, R., & Chakraborty, D. (2023). Adoption of AI in the banking industry: A case study on Indian banks. Indian Journal of Marketing, 53(3), 26–41. https://doi.org/10.17010/ijom/2023/v53/i3/172654

56) Pan, Y., Froese, F., Liu, N., Hu, Y., & Ye, M. (2022). The adoption of artificial intelligence in employee recruitment: The influence of contextual factors. The International Journal of Human Resource Management, 33(6), 1125–1147. https://doi.org/10.1080/09585192.2021.1879206

57) Patra, G., Mukhopadhyay, I., & Dash, C. K. (2019). Digital employer branding for enabling Gen Y in the ITeS sector in Eastern India. Prabandhan: Indian Journal of Management, 12(3), 38–49. https://doi.org/10.17010/pijom/2019/v12i3/142339

58) Patra, Y., & Tripathi, S. (2019). Contriving human capital practices which influence organizational commitment: Reimagine future skills of HR. Prabandhan: Indian Journal of Management, 12(10), 20–32. https://doi.org/10.17010/pijom/2019/v12i10/147814

59) Pessach, D., Singer, G., Avrahami, D., Ben-Gal, H., Shmueli, G., & Ben-Gal, I. (2020). Employees recruitment: A prescriptive analytics approach via machine learning and mathematical programming. Decision Support Systems, 134, Article ID 113290. https://doi.org/10.1016/j.dss.2020.113290

60) Polisetty, A., & Sheela, P. (2023). Will AI replace humans from human resources? A case analysis. Prabandhan: Indian Journal of Management, 16(6), 25–38. https://doi.org/10.17010/pijom/2023/v16i6/172862

61) Qamar, Y., Agrawal, R. K., Samad, T. A., & Jabbour, C. J. (2021). When technology meets people: The interplay of artificial intelligence and human resource management. Journal of Enterprise Information Management, 34(5), 1339–1370. https://doi.org/10.1108/JEIM-11-2020-0436

62) Rąb-Kettler, K., & Lehnervp, B. (2019). Recruitment in the times of machine learning. Management Systems in Production Engineering, 27(2), 105–109. https://doi.org/10.1515/mspe-2019-0018

63) Raj, I. A., & Julius, S. (2018). Causes and consequences of work stress and coping behaviour of employees: An analysis. Prabandhan: Indian Journal of Management, 11(3), 24–38. https://doi.org/10.17010/pijom/2018/v11i3/122075

64) Ramaprasad, B. S., Prabhu, K. P., Lakshminarayana, S., & Pai, Y. P. (2017). Human resource management practices and organizational commitment: A comprehensive review (2001–2016). Prabandhan: Indian Journal of Management, 10(10), 7–23. https://doi.org/10.17010/pijom/2017/v10i10/118810

65) Rathi, R. A. (2018). Artificial intelligence and the future of HR practices. International Journal of Applied Research, 4(6), 113–116. https://www.allresearchjournal.com/archives/2018/vol4issue6/PartB/4-6-18-226.pdf

66) Selek, S., & Saleh, A. (2014). Use of h index and g index for American academic psychiatry. Scientometrics, 99, 541–548. https://doi.org/10.1007/s11192-013-1204-4

67) Siddiqui, A., Siddiqui, M., & Kulkarni, N. (2022). Artificial intelligence in water conservation: A meta-analysis study. Prabandhan: Indian Journal of Management, 15(3), 24–41. https://doi.org/10.17010/pijom/2022/v15i3/160407

68) Singh, H., Aggarwal, R., Garg, P., & Aggarwal, D. (2025). AI and ESG performance: An empirical study of the high-tech sector. Prabandhan: Indian Journal of Management, 18(6), 8–25. https://doi.org/10.17010/pijom/2025/v18i6/174487

69) Sinha, B. C., & Mishra, M. (2015). E-HRM attributes and internal stakeholders' satisfaction: A quantitative study in select Indian organizations. Prabandhan: Indian Journal of Management, 7(2), 27–39. https://doi.org/10.17010/pijom/2014/v7i2/59257

70) Strohmeier, S., & Piazza, F. (2015). Artificial intelligence techniques in human resource management—A conceptual exploration. In C. Kahraman, & S. Ç. Onar (eds.), Intelligent techniques in engineering management. Intelligent Systems Reference Library (Vol. 87, pp. 149–172). https://doi.org/10.1007/978-3-319-17906-3_7

71) Surwase, G., Sagar, A., Kademani, B. S., & Bhanumurthy, K. (2011). Co-citation analysis: An overview. In BOSLA National Conference Proceedings (pp. 179–185). Bombay Science Librarian Association. https://core.ac.uk/download/pdf/290485458.pdf

72) Tambe, P., Cappelli, P., & Yakubovich, V. (2019). Artificial intelligence in human resources management: Challenges and a path forward. California Management Review, 61(4), 15–42. https://doi.org/10.1177/0008125619867910

73) Thite, M. (2014). From local to global HRM: Interviews with HR heads in emerging Indian multinationals. International Journal of Indian Culture and Business Management, 9(2), 151–163. https://doi.org/10.1504/IJICBM.2014.064185

74) Tong, S., Jia, N., Luo, X., & Fang, Z. (2021). The Janus face of artificial intelligence feedback: Deployment versus disclosure effects on employee performance. Strategic Management Journal, 42(9), 1600–1631. https://doi.org/10.1002/smj.3322

75) Tripathi, A., Bagga, T., & Aggarwal, R. K. (2020). Strategic impact of business intelligence: A review of literature. Prabandhan: Indian Journal of Management, 13(3), 35–48. https://doi.org/10.17010/pijom/2020/v13i3/151175

76) Tripathi, S., Gautam, S., & Lal, A. (2017). Evolving human resource landscape of the Indian retail sector: Bridging the skill-gap. Prabandhan: Indian Journal of Management, 10(2), 41–52. https://doi.org/10.17010/pijom/2017/v10i2/110633

77) Vaishnavi, Amritaa, K. S., & Achwani, S. (2018). A study on use of artificial intelligence in human resource management. Gavesana Journal of Management, 10(2), 45–56. https://www.proquest.com/openview/cd9b4bd51715410b87eab5a9a4faa1f0/1?pq-origsite=gscholar&cbl=2044546

78) Vatsa, R., & Bhatnagar, P. (2021). Role of learning ability and learning agility for corporate success: A textual analysis. Prabandhan: Indian Journal of Management, 14(10), 24–37. https://doi.org/10.17010/pijom/2021/v14i10/166642

79) Votto, A. M., Valecha, R., Najafirad, P., & Rao, H. R. (2021). Artificial intelligence in tactical human resource management: A systematic literature review. International Journal of Information Management Data Insights, 1(2), Article ID 100047. https://doi.org/10.1016/j.jjimei.2021.100047

80) Vrontis, D., Christofi, M., Pereira, V., Tarba, S., Makrides, A., & Trichina, E. (2022). Artificial intelligence, robotics, advanced technologies and human resource management: A systematic review. The International Journal of Human Resource Management, 33(6), 1237–1266. https://doi.org/10.1080/09585192.2020.1871398

81) Wilfred, D. (2018). AI in recruitment. NHRD Network Journal, 11(2), 15–18. https://doi.org/10.1177/0974173920180204

82) Wright, S. A., & Schultz, A. E. (2018). The rising tide of artificial intelligence and business automation: Developing an ethical framework. Business Horizons, 61(6), 823–832. https://doi.org/10.1016/j.bushor.2018.07.001

83) Yadav, D. K., Yadav, J., & Malik, R. (2019). E-HRM: A paradigm shift in HR practices and its effects on perception of employees towards accepting this new technology. Prabandhan: Indian Journal of Management, 12(2), 23–39. https://doi.org/10.17010/pijom/2019/v12i2/141754